library(edgebundleR)
The main function in the edgebundleR package is edgebundle()
. It takes in a variety of inputs: - an igraph object - a symmetric matrix, e.g. a correlation matrix or (regularised) precision matrix - a JSON file structured with name
and imports
as the keys
The result of the edgebundle()
function is a webpage that is rendered in the RStudio Viewer pane by default, but also may be exported to a self contained webpage, embedded in an Rmarkdown document or used in a Shiny web application.
Given an igraph object as the input, the function will extract the linkages and plot them. For example,
require(igraph)
ws_graph <- watts.strogatz.game(1, 50, 4, 0.05)
edgebundle(ws_graph,tension = 0.1,fontsize = 18,padding=40)
Here’s a more complicated example adapted from this stackoverflow question and answer.
library(igraph)
library(data.table)
d <- structure(list(ID = c("KP1009", "GP3040", "KP1757", "GP2243",
"KP682", "KP1789", "KP1933", "KP1662", "KP1718", "GP3339", "GP4007",
"GP3398", "GP6720", "KP808", "KP1154", "KP748", "GP4263", "GP1132",
"GP5881", "GP6291", "KP1004", "KP1998", "GP4123", "GP5930", "KP1070",
"KP905", "KP579", "KP1100", "KP587", "GP913", "GP4864", "KP1513",
"GP5979", "KP730", "KP1412", "KP615", "KP1315", "KP993", "GP1521",
"KP1034", "KP651", "GP2876", "GP4715", "GP5056", "GP555", "GP408",
"GP4217", "GP641"),
Type = c("B", "A", "B", "A", "B", "B", "B",
"B", "B", "A", "A", "A", "A", "B", "B", "B", "A", "A", "A", "A",
"B", "B", "A", "A", "B", "B", "B", "B", "B", "A", "A", "B", "A",
"B", "B", "B", "B", "B", "A", "B", "B", "A", "A", "A", "A", "A",
"A", "A"),
Set = c(15L, 1L, 10L, 21L, 5L, 9L, 12L, 15L, 16L,
19L, 22L, 3L, 12L, 22L, 15L, 25L, 10L, 25L, 12L, 3L, 10L, 8L,
8L, 20L, 20L, 19L, 25L, 15L, 6L, 21L, 9L, 5L, 24L, 9L, 20L, 5L,
2L, 2L, 11L, 9L, 16L, 10L, 21L, 4L, 1L, 8L, 5L, 11L),
Loc = c(3L, 2L, 3L, 1L, 3L, 3L, 3L, 1L, 2L,
1L, 3L, 1L, 1L, 2L, 2L, 1L, 3L,
2L, 2L, 2L, 3L, 2L, 3L, 2L, 1L, 3L, 3L, 3L, 2L, 3L, 1L, 3L, 3L,
1L, 3L, 2L, 3L, 1L, 1L, 1L, 2L, 3L, 3L, 3L, 2L, 2L, 3L, 3L)),
.Names = c("ID", "Type", "Set", "Loc"), class = "data.frame",
row.names = c(NA, -48L))
# let's add Loc to our ID
d$key <- d$ID
d$ID <- paste0(d$Loc,".",d$ID)
# Get vertex relationships
sets <- unique(d$Set[duplicated(d$Set)])
rel <- vector("list", length(sets))
for (i in 1:length(sets)) {
rel[[i]] <- as.data.frame(t(combn(subset(d, d$Set ==sets[i])$ID, 2)))
}
rel <- rbindlist(rel)
# Get the graph
g <- graph.data.frame(rel, directed=F, vertices=d)
clr <- as.factor(V(g)$Loc)
levels(clr) <- c("salmon", "wheat", "lightskyblue")
V(g)$color <- as.character(clr)
V(g)$size = degree(g)*5
# igraph static plot
# plot(g, layout = layout.circle, vertex.label=NA)
edgebundle( g )
require(MASS)
sig = kronecker(diag(3),matrix(2,5,5)) + 3*diag(15)
X = MASS::mvrnorm(n=100,mu=rep(0,15),Sigma = sig)
colnames(X) = paste(rep(c("A.A","B.B","C.C"),each=5),1:5,sep="")
edgebundle(cor(X),cutoff=0.2,tension=0.8,fontsize = 14)
A bit more intricate with multiple levels of grouping:
devtools::install_github("garthtarr/edgebundleR")
require(edgebundleR)
require(MASS)
sig = kronecker(diag(12),matrix(2,5,5)) + 3*diag(60)
X = MASS::mvrnorm(n=100,mu=rep(0,60),Sigma = sig)
colnames(X) = paste(rep(c("Sample1.Left.A.A","Sample1.Left.B.B","Sample1.Left.C.C",
"Sample1.Right.A.A","Sample1.Right.B.B","Sample1.Right.C.C",
"Sample2.Left.A.A","Sample2.Left.B.B","Sample2.Left.C.C",
"Sample2.Right.A.A","Sample2.Right.B.B","Sample2.Right.C.C"),
each=5),1:5,sep="")
Y = X[,sample(dim(X)[2])]
edgebundle(cor(Y),cutoff=0.2,tension=0.8,fontsize = 14)
Alternatively, you could do some regularisation and plot the results of that:
require(huge)
data("stockdata")
# generate returns sequences
X = log(stockdata$data[2:1258,]/stockdata$data[1:1257,])
# perform some regularisation
out.huge = huge(cor(X),method = "glasso",lambda=0.56,verbose = FALSE)
# identify the linkages
adj.mat = as.matrix(out.huge$path[[1]])
# format the colnames
nodenames = paste(gsub("","",stockdata$info[,2]),stockdata$info[,1],sep=".")
head(cbind(stockdata$info[,2],stockdata$info[,1],nodenames))
colnames(adj.mat) = rownames(adj.mat) = nodenames
# restrict attention to the connected stocks:
adj.mat = adj.mat[rowSums(adj.mat)>0,colSums(adj.mat)>0]
# plot the result
edgebundle(adj.mat,tension=0.8,fontsize = 10)
If you already have an appropriately formatted JSON file with name
and imports
as the keys linking various nodes, you can load it directly as follows:
filepath = system.file("sampleData", "flare-imports.json", package = "edgebundleR")
edgebundle(filepath,width=800,fontsize=8,tension=0.95)
In this example, the first few lines of the file are:
system(paste("head -4",filepath))
[
{"name":"flare.analytics.cluster.AgglomerativeCluster","size":3938,"imports":["flare.animate.Transitioner","flare.vis.data.DataList","flare.util.math.IMatrix","flare.analytics.cluster.MergeEdge","flare.analytics.cluster.HierarchicalCluster","flare.vis.data.Data"]},
{"name":"flare.analytics.cluster.CommunityStructure","size":3812,"imports":["flare.analytics.cluster.HierarchicalCluster","flare.animate.Transitioner","flare.vis.data.DataList","flare.analytics.cluster.MergeEdge","flare.util.math.IMatrix"]},
{"name":"flare.analytics.cluster.HierarchicalCluster","size":6714,"imports":["flare.vis.data.EdgeSprite","flare.vis.data.NodeSprite","flare.vis.data.DataList","flare.vis.data.Tree","flare.util.Arrays","flare.analytics.cluster.MergeEdge","flare.util.Sort","flare.vis.operator.Operator","flare.util.Property","flare.vis.data.Data"]},
The important elements are the name
and imports
keys. In the current implementation, size
is ignored. Note the dots in the node names, these are used to do the clustering. For example these first three nodes would all appear grouped together in the graph as they all start with flare.analytics.cluster
. You can have multiple levels of clustering (hierarchical clustering) using different depths in the naming convention. Any text after the final dot will be rendered as the node label in the graph.
When running (recent versions of) RStudio, the default behaviour is for the plot to render in the Viewer pane. You should not specify the width and height parameters, as these will override the dynamic resizing behaviour.
For example, the following code would generate a plot that dynamically resizes to fit in the Viewer pane:
ws_graph = watts.strogatz.game(1, 50, 4, 0.05)
edgebundle(ws_graph,tension = 0.1,fontsize = 20)
You can open the graph in a web browser from RStudio using the “Show in new window” icon. If you would like to save the webpage to share with others, the best option is to use the saveEdgebundle
function:
g = edgebundle(ws_graph,tension = 0.1,fontsize = 20,width=600,height=600)
saveEdgebundle(g,file = "ws_graph.html")
This will create a fully self contained html file that renders reliably in most browsers.
Using the shinyedge
function, you can interactively adjust the font size, height/width and tension then export the graph to a self contained html file. The input to the shinyedge
function is a JSON file, igraph object or symmetric matrix (the same as the edgebundle
function).
g1 = watts.strogatz.game(1, 100, 4, 0.05)
shinyedge(g1)
If you are building your own Shiny app, you can use the standard output and render functions: edgebundleOutput
and renderEdgebundle
.